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Abstract—The fusion of magnetic resonance imaging and
positron emission tomography can combine biological anatomical
information and physiological metabolic information, which is
of great significance for the clinical diagnosis and localization
of lesions. In this paper, we propose a novel adaptive linear
fusion method for multi-dimensional features of brain magnetic
resonance and positron emission tomography images based on
a convolutional neural network, termed as MdAFuse. First, in
the feature extraction stage, three-dimensional feature extraction
modules are constructed to extract coarse, fine, and multi-scale
information features from the source image. Second, at the
fusion stage, the affine mapping function of multi-dimensional
features is established to maintain a constant geometric re-
lationship between the features, which can effectively utilize
structural information from a feature map to achieve a better
reconstruction effect. Furthermore, our MdAFuse comprises a
key feature visualization enhancement algorithm designed to
observe the dynamic growth of brain lesions, which can facilitate
the early diagnosis and treatment of brain tumors. Extensive
experimental results demonstrate that our method is superior
to existing fusion methods in terms of visual perception and
nine kinds of objective image fusion metrics. Specifically, in the
results of MR-PET fusion, the SSIM (Structural Similarity) and
VIF (Visual Information Fidelity) metrics show improvements
of 5.61% and 13.76%, respectively, compared to the current
state-of-the-art algorithm. Our code is publicly available at:
https://github.com/22385wjy/MdAFuse.

Index Terms—MR, PET, multi-scale, image fusion, affine
transformation.

I. INTRODUCTION

MEDICAL image fusion technology fuses important ref-
erence information from different modal images into

one medical image. This resulting image provides more intu-
itive, comprehensive and clear information. Medical imaging
plays an important role in various clinical applications. Among
them, Magnetic resonance (MR) and Positron emission tomog-
raphy (PET) provide an imaging basis for a variety of diseases
and are widely used in the clinical diagnosis of diseases,
such as benign and malignant brain tumors, depression, early-
onset Alzheimer’s disease, cerebral ischemia and others. The
fusion of MR and PET brain images has been proven to be
clinically significance [1], [2]. The diagnosis of a variety of
brain diseases often depends on MR-PET imaging. Dynamic
observation of brain lesions and qualitative analysis of brain
tumors are also very important [3], [4]. MR imaging can
clearly display soft tissue with high spatial resolution and
is conducive to the determination of the scope of lesions.

PET provides good physiological and metabolic information
about the human body. Therefore, the extensive demand for
combined MR-PET imaging has prompted the development
of integrated MR-PET equipment (hybrid PET/MR). The
ultimate effect of this advancement is to assist medical pro-
fessionals in diagnosing brain abnormalities more effectively.

At present, the traditional methods for MR-PET medical
image fusion are simple weighting [5], multiresolution pyra-
mids [6], wavelet transform [7], color space [8], principal
component analysis [9], human visual systems [10], etc. In
the past decade, due to the emergence of large datasets and
improvements in GPU computing power, the deep learning
method, which does not rely on artificial features, has achieved
great success in the field of image processing. Recently, deep
learning has become a representative method of image fusion
and a research hotspot. A variety of image fusion methods
based on deep learning have been proposed in succession
[11]–[13]. Fusing images with deep learning is an effective
solution, to pursue a better perception effect, the design of
an image fusion model is mainly based on the definition of
some more diverse design rules to enhance the transformation
and fusion strategy. In this paper, we propose a new idea
for MR-PET medical image fusion based on unsupervised
deep learning. First, a three-dimensional feature extraction
module is established to extract the coarse, fine and multi-scale
information features from a source image, and then the affine
mapping function of multi-dimensional features is established
to fuse the multi-dimensional features. In sum, our work makes
the following three main contributions:

• Multi-dimensional analysis of the image is divided into
three modules to extract the coarse features, fine features
and multi-scale features from the source images. The
three modules focus on the importance of different in-
formation from source images and try to extract different
levels of features, reduce the loss of features in the
process of feature transfer, and improve the accuracy of
subsequent feature fusion.

• The affine mapping function is established to maintain
the geometric relationship between different dimension
features, whose correlation coefficients are generated
adaptively through the learning process. So that multi-
dimension features including the spatial texture informa-
tion of the MRI image and the functional metabolic infor-
mation of the PET/SPECT image can be fully preserved
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in the fused image.
• We propose a kind of energy-based color enhancement

algorithm to further enhance the visualization effect,
mainly enhance the energy information from the original
PET/SPECT images in the fused image. While using it
to display abnormal areas in different time series of the
same case, the evolution process of lesions (e.g., brain
tumors) can be tracked better.

The remainder of this article is organized as follows: the
second section describes relevant work regarding medical
image fusion. The third section demonstrates how to extract
multi-dimensional features and fuse these features by a linear
mapping function method. The fourth section describes the
fusion experiment and result analysis of this method applied
to MR-PET/SPECT brain images. The fifth section provides
a summary of and futuristic prospective for the algorithm.

II. RELATED WORK

Currently, the fusion methods that can be applied to MR-
PET/SPECT medical images include some traditional fusion
methods and deep learning based (DL-based) fusion methods,
each type of which has its own advantages and disadvantages.
In this section, we discuss some representative methods.

Traditional fusion methods: In traditional image fusion
methods, the simple weighted averaging method, wavelet
transform application and color space swap are three repre-
sentative pixel-level fusion methods that are often applied to
medical image fusion. Li and Wu [5] proposed a simple and
effective image fusion method based on latent low rank repre-
sentation (LatLrr) to better preserve the useful information in
source images. This method uses a simple weighted average
fusion strategy. By using the idea of low-rank clustering, the
image is divided into low-rank and significant parts, and the
weighted sum of the low-rank and significant parts is used
to obtain the fusion result. Li et al. [14] used the low-rank
decomposition method in noisy image fusion and obtained
the fusion result mainly through minimum rank regularization.
LatLrr can highlight the global structure information of an
image, but its abilities for local structure preservation and
detail extraction are poor.

Wavelet transform is also a classical method. Wavelets
not only have orthogonality, biorthogonality and compactness
but also have multiresolution characteristics. Zhan et al. [15]
proposed an image fusion method based on phase congruency
fusion (PCF); they used phase consistency to extract local
and dramatic changes in images. This method uses a Gabor
wavelet filter in space to improve phase consistency. The
application of wavelet transforms [7], [16] is also conducive to
understanding images, especially medical images. The wavelet
transform has the characteristics of multiresolution and can
observe signals from coarse to fine, but the wavelet transform
method requires one appropriate mother wavelet and a feasible
decomposition level. To facilitate doctors’ understanding of
images and especially to observe changes in physiological
metabolism depicted in PET images, some researchers have
developed fusion strategies to maintain pseudocolor. Du et al.
[8] used a dual-scale strategy and color domain transforma-
tion to maintain pseudocolor information, thereby integrating

gray images (such as MR) and pseudocolor images (such as
PET and SPECT), and focused on preserving pseudocolor
information. However, color space conversion will also cause
some information loss. In conclusion, some traditional fusion
methods can achieve a high-quality fusion effect, but most
fusion methods depend on manual feature extraction rules
of specific image types, including setting parameters. With
increasing image type and number, feature extraction becomes
increasingly complex. At the same time, the generalization
ability of traditional methods is very weak.

DL-based fusion methods: In multimodal image fusion,
traditional methods and deep learning methods are combined,
which can improve model performance. Zhong et al. [17] pro-
posed a joint image fusion and superresolution method based
on a CNN. Rajalingam et al. [18] proposed a deep guided hy-
brid multimode medical image fusion (HMMIF) method that
has been applied to the neuropathology of neurocysticercosis,
a degenerative disease. The combination of classic traditional
and deep learning methods can effectively improve the perfor-
mance of networks. However, some traditional methods need
a priori knowledge, and combining traditional methods may
increase the time and space complexity. Recently, some end-
to-end deep neural networks have been applied to medical
image fusion [19], [20]. Rajalingam and Priya [21] proposed
a multimodal medical image fusion method based on a deep
learning neural network. The method used a conjoint convo-
lutional neural network to generate a weighted graph to fuse
pixel motion information from multimodal medical images. F.
Zhao and W. Zhao [22] proposed a general fusion framework
based on representation learning, which study is a domain-
specific unreferenced perceptual metric loss based on edge
detail and contrast to optimize the learning process and make
the fused images exhibit a more specific appearance.

In order to improve the global feature coding capability
of U-Net, Xiao et al. [23] introduced global feature Pyramid
extraction module (GFPE) and global attention connection on
sample module (GACU) to extract and utilize global semantic
and edge information effectively. Unsupervised deep neural
network models such as DeepVTF [24] and VIFNet [25] have
been designed recently. The DeepVTF method established a
visual similarity measure between the input conventional true
color and the fused output to obtain a natural and intuitive
image. VIFNet is derived from a robust hybrid loss function,
which is composed of a modified structural similarity measure
and total variation. Kumar et al. [26] proposed a deep neural
network model called FunFuseAn, which uses SSIM as the
loss function to fuse MRI and PET images. Xu et al. [27]
introduced a depth fusion model based on gradient and con-
nected domain multifocus images. To overcome the obstacle of
gradient loss when a deep network was applied to multifocus
image fusion, a mask network was designed to generate a
binary mask directly. The consistency verification strategy
was adopted to generate fusion results by adjusting the initial
binary mask. Zhang et al. [28] proposed the fusion model
IFCNN, which uses transfer learning technology and maxi-
mum tensor strategy. Xu et al. [29] introduced an unsupervised
and unified dense connected network called FusionDN for
different types of image fusion tasks. This method generates a
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Fig. 1. The flowchart of MdAFuse consists of two stages, i.e., image fusion and visualization enhancement. A novel CNN network is built to fuse a pair of
MR-SPECT image to obtain a piece of high-quality fused image in the fusion stage. And in the visualization stage, a new color enhancement algorithm is
proposed to further improve the visualization effect of the fused image. More details for these two stages are respectively displayed in Fig. 2 and Fig. 3.

fused image based on the degree of retention of the source
image (i.e., the quality of the source and the amount of
information) by training dense connected networks.

Specially in recent two years, several new methods have
been proposed, as [30]–[32]. Zhao et al. [30] proposed a dual-
branch Transformer-CNN network architecture (CDDFuse) for
multimodal image fusion. To extract specific modality features
and modality-shared features, they employed Restormer, Lite
Transformer, and reversible neural network modules. Feature
decomposition was achieved through the introduction of a
correlation-driven decomposition loss. Xu et al. [31] proposed
a novel unified unsupervised end-to-end image fusion network
(U2Fusion). Through feature extraction and information mea-
surement, U2Fusion automatically estimates the importance
of correspondences from source images and provides adaptive
information retention. Liang et al. [32] proposed a powerful
image decomposition model called Decomposition for Fusion
(DeFusion) that performs fusion tasks through self-supervised
representation learning without any paired data or complex
loss functions. DeFusion can decompose the source images
into a feature embedding space where common and unique fea-
tures can be separated, allowing image fusion to be achieved
within the embedding space through reconstruction jointly
trained during the decomposition stage, even without any fine-
tuning. It designs a self-supervised pre-training task based
on common and unique decomposition (CUD) that adapts
to image fusion task. Another important branch of the deep
learning method is a method based on a generative adversarial
network (GAN) [33], [34]. Inspired by the conditional gener-
ative adversarial network (CGAN), Ma et al. [35] introduced
a GAN into image fusion and an unsupervised GAN network
image fusion framework termed FusionGAN.

These newly-developed deep learning models have designed
a unified framework for image fusion, which is powerful and
performs well for fusing natural images. They can also be di-
rectly used for medical image fusion with better performance.
Compared with the traditional methods, the deep learning
method has the characteristics of independent learning, flexible
real-time processing and good generalization. Considerable
potential has been identified in deep learning-based methods.
However, there are significant differences between medical
images and natural images, and the dataset size is small, result-
ing in a general decline in the performance of fusion models
designed for natural images on medical images. At present,
deep neural networks specifically designed for medical image
fusion are still in their infancy. Corresponding methods that
can be applied in hybrid PET/MR are even more rare. In

order to achieve better model performance with limited data
samples, medical image fusion typically requires consideration
of specific clinical insights and imaging mechanisms (such as
mechanisms and anatomical structures of different modalities),
and the design of effective fusion strategies to integrate these
different information sources, thereby fully utilizing these
medical domain knowledge in the fusion process. In this paper,
we focus on extracting and preserving key features from MR
and PET images. To achieve this, multi-dimensional feature
models and an adaptive linear fusion strategy are designed.

III. THE PROPOSED IMAGE FUSION NETWORK AND
VISUALIZATION METHOD

As illustrated in Fig. 1, our work in this paper consists of
two aspects. Firstly, we propose a DL-based fusion network
designed for MR and PET/SPECT brain images. Secondly,
we present an energy-based visualization method to further
enhance the fused images. In the fusion network, we employ
a multi-dimensional feature extraction method and an adaptive
linear fusion strategy. These aspects will be discussed in
detail in Subsection A and Subsection B, respectively. The
Subsection C will cover the explanation of how the loss
function of this network is set. Subsequently, we will describe
the proposed visualization method in Subsection D.

A. Feature extraction

In this procedure, we try to extract and preserve important
information from the source MR and PET images as much
as possible, we adopt a multi-dimensional approach, making
full use of spatial and channel features, and establish three
modules, namely, the coarse feature module (CFM), the fine
feature module (FFM) and the multi-scale feature module
(MFM), to extract coarse feature information, fine feature
information and multi-scale feature information, respectively.
CFM is responsible for capturing the main shape structure
and edge contour information of images, which belongs to
key information for distinguishing tissue boundaries and lesion
localization. FFM is responsible for capturing fine texture
details, which belongs to key information for identifying lesion
types. MFM is mainly designed to retrieve the complemen-
tary information between multi-scale images to achieve finer
fusion.

As illustrated in Fig. 2, the specific feature extraction
process is presented in the blue dotted line box. In Fig.
2, the small squares with different colors represent three
steps (convolution operation, batch normalization and ReLU
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Fig. 2. The framework of the proposed image fusion network, including feature extraction and feature fusion. The feature extraction consists of three modules:
CFM (coarse feature module), FFM (fine feature module) and MFM (multi-scale feature module). The feature fusion adopts a adaptive linear mapping function
to establish relationship between multi-dimensional features.

activation), different colored squares represent different sizes
of convolution kernels, yellow is 1, blue is 3, green is 5, purple
is 7 and pink is 3. Squares of different sizes represent different
feature map sizes and the number of output channels. There is
a definition of different channel numbers in the gray dotted box
at the lower right corner of Fig. 2, that is, squares with different
widths represent the outputs of different channel numbers, and
the darker the color is, the bigger the number of channels.
For an input image, the feature extraction module will obtain
three dimensions of features, namely, CF1, FF1 and MF1.
These feature extraction modules are designed based on the
perceptual characteristics of human visual perception and the
physical properties of images.

In Fig. 2, CFM is represented by the area with a yellow
background on the edge of the fuchsia solid line. CFM stands
for coarse feature module, which is responsible for coarse fea-
ture extraction from images through convolution operations. It
utilizes larger convolution kernels and smaller feature channels
to capture the main shape structures and edge contour informa-
tion of images, representing global low-frequency information
such as image backgrounds and object contours. From the
feature maps shown in Fig. 2, it can be observed that the
CF feature map extracted by the CFM module exhibits clearer
contours. Similarly, in Fig. 2, FFM is denoted by the area with
a purple background on the edge of the blue solid line. FFM
refers to the fine feature module, which focuses on fine feature
extraction. This module employs smaller convolution kernels
and larger feature channels to capture texture details such as
object edges, fine texture details, and noise, representing local
high-frequency information with significant variations within
the images. The number of channels used for fine feature

extraction is much greater than that used for coarse feature
extraction. From the feature maps shown in Fig. 2, it can be
observed that the FF feature map extracted by the FFM module
displays more distinct texture details.

In Fig. 2, MFM is the area with blue background on the edge
of purple. MFM mainly obtains the spatial structure from the
idea of pyramid and classification to obtain the complementary
information between multi-scale images and uses the comple-
mentary information between multiresolution and multi-scale
images to achieve fine fusion. In the MFM, the deep separation
convolution network is also used, which is convenient for
mining more abundant and useful information and can provide
a good foundation for subsequent image comprehension and
application analysis. As in reference [36], [37], we use a skip
connection approach when implementing neural networks.
In our design of the feature extraction module, we place
more emphasis on local fine-grained information rather than
global features. Using short skip connections facilitates the
transmission and preservation of local information, enabling
the network to better learn and utilize these localized character-
istics. Therefore, short skip cascading is used in the process of
feature extraction to obtain more detailed information, realize
the gradual fusion of features.

B. Fusion strategy

MdAFuse extracts features from three dimensions, i.e.,
coarse, fine and multi-scale dimensions. The coarse features
are mainly reflected in the edge contour information, while
the fine features can retain the texture details. To obtain both
high frequency information and low frequency information
from an image, the coarse and fine features of each image are
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Fig. 3. The pipeline of defining pseudo color by BGR histogram to enhance the energy information of original SPECT image in the fused image. Given five
pieces of SPECT images captured at different time series from the same case, this pipeline generates the corresponding enhanced fused image series, which
facilitate dynamically tracing abnormal regions and diagnosing brain tumors.

added to obtain the image features with more information. To
highlight salient features in two images, especially highlighted
information on PET/SPECT images (often corresponding to
abnormal areas), we use the maximum value to obtain the
more prominent part. Multi-scale features can provide more
structural information and can also compensate for missing
local details at the cross scale. Therefore, the coarsest and
finest features must be multi-scale. For each input, three
features (CF, FF and MF) will be obtained. When two modal
images are input, six features are extracted.

We design an affine transformation function to fuse them
together. According to the reference [38], affine transforma-
tions exhibit unique geometric fidelity properties that demon-
strate distinct advantages within the context of linear fusion
frameworks. Further, we set the affine transformation scale
to learnable parameters to build an adaptive fusion strategy,
which can effectively enhance both the overall quality of fused
images and the integrity of information they contain. So an
affine transformation is adopted as an adaptive strategy to
make full use of the correlations among features and maintain
them as:

Φ(Γ) = β(

U∑
i=1

CF (i))+β(

U∑
i=1

FF (i)) = A

2∑
j=1

U∑
i=1

Γj(i)+2e,

(1)
where Φ is the sum of two features that obtained by affine
transformations, as shown in Eq. (1). When Γ represents
the elements or properties of Ωa, Γj denotes a subset or
component of Γ that encapsulates both the CF1 feature and
the FF1 feature. In Eq. (1), U means the size of feature map.
β(Γ) = AΓ(i) + e, A = cI , where I is the identity matrix,
c is the scaling factor and e represents the shift vector. The
proposed fusion strategy is adaptive because both c and e are
learnable parameters. The rules of setting the size are the same
as those for post-normalization [39]. The value of initialization

c is 1, and e is 0. β is the affine transformation function,
which is used to express the correlation between features. The
affine transformation is geometrically defined as a nonsingular
linear transformation and translation transformation between
two vector spaces, which can be used to maintain the position
relationship between two-dimensional images. We adopt the
emulating objective function as:

F = δ(Φ((υ(φ(Φ(Ωa), Φ(Ωb))) + β(Ωc))/2)), (2)

where F is the result of fusion. δ is the activation function,
tanh being adopted in this paper. Ωa = {CF1} ∪ {FF1},
Ωb = {CF2} ∪ {FF2}, and Ωc = (MF1 + MF2)/2. υ
represents a convolution operation to keep the input and
output dimensions consistent. φ is the maximum operation
to highlight the significant information.

C. Loss function

To reconstruct the source image more accurately, we con-
sider the feature extraction stage and fusion process in the
training phase and obtain the minimum loss function:

L = αLS + λLM . (3)

The total loss function consists of structural similarity LS and
pixel loss LM , The specific calculation process is provided
in the Appendix. Here, α, λ are weight parameters for users
to set in the interval [0, 1]. Through comparative analysis, α
set to 0.3 and λ set to 0.7 in the training process, and the
result is the best. In the training process, the initial learning
rate is 0.0001, 60 epoch, batch size is 2, we employ batch
normalization, and the optimization function is Adam.

D. Enhancement of key features

PET or SPECT image has limited spatial resolution and
unclear grayscale distinctions at boundaries, constraining the
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differentiation between abnormal and normal areas. To en-
hance visibility, pseudocolor processing is commonly applied
in clinical settings, assisting doctors in identifying boundary
details and improving the accuracy of disease diagnosis.

In the generation of grayscale fused images through MR-
PET/SPECT fusion, spatial textures from the MR images
are clear, while the low-resolution grayscale PET/SPECT
images struggle to reveal significant abnormalities in glucose
metabolism. Existing pseudocolor methods involve discrete
color mapping based on grayscale and continuous translation
from grayscale to color properties. However, none of these
techniques focuses on highlighting these significant abnormali-
ties in PET/SPECT images. To emphasize these abnormalities,
we propose an energy-based color enhancement algorithm
based on the grayscale histogram of PET/SPECT. This al-
gorithm enhances the visual effect of abnormal information,
and details are described in Algorithm 1 and Fig. 3. where,
Ig represents the gray PET/SPECT, If is the fused image,
Ie is the enhanced image, ηw and ηb are the white and black
areas in the threshold binarization process respectively. ρw and
ρb are two self-defined color for the white and black areas.
Ic[aij ](i, j) represents the region in the Ic correspingding
to Ia. The key feature enhancement process is shown in Fig.
3. In this part of the work, the main purpose is to obtain
useful information that can represent the glucose content or
physiological metabolism in a PET/SPECT image and enhance
important information in fusion results as:

ζ = ϑ (χ (ϕ (Ig)) , p) , (4)

τw = ζl, l = κ− 1, (5)

Iw(i, j) =

{
0, Ig(i, j) ≤ τw

255, Ig(i, j) > τw
, (6)

Ib(i, j) =

{
0, Ig(i, j) < τb1 ∥ Ig(i, j) > τb2

255, Ig(i, j) > τb1 & Ig(i, j) ≤ τb2
. (7)

Firstly, we should analyze the energy distribution in the gray
PET/SPECT, including the size distribution of different pixels,
distribution of different positions of pixels, concentration areas
of useful information, and number of regions representing
similar information. There are two forms of energy distribution
mainly in PET/SPECT. One is the tissue with high glucose
content or vigorous metabolism, which is displayed in white
area. The other is the tissue with low glucose content or weak
metabolism, which is shown in black area.

Secondly, we need to obtain black and white areas in gray
PET/SPECT. We use the thresholding method to extract these
two types of images. The key to thresholding lies in the setting
of the threshold, and τw is the threshold of extracting the white
area block, which is obtained by Eq. (5). In Eq. (5), ζ refers
to the grayscale values of the peaks in the histogram. κ refers
to the total number of peaks. In Eq. (4), the function of ϕ
represents the computation of the histogram, the function of
χ represents its transformation into one dimension, and the
parameter p denotes the minimum height difference between
the peak and its surrounding valleys, which set 100 in the
example of Fig. 3. The function of ϑ is used for finding

Algorithm 1. Energy-based color enhancement
Input: Images Ig , If
Output: Image Ie

1 x← the weight of Ig
2 y ← the height of Ig
3 ρw ← self-defined color for image of white area
4 ρb ← self-defined color for image of black area
5 ηw, ηb ← γ(Ig)
6 σ ← ColorUp(Ig, If , ηw, ρw)
7 Ie ← ColorUp(Ig, σ, ηb, ρb)
8

9 Function ColorUp(Ig, If , Ia, Ic)
10 I ← If .copy()
11 if Ic == ρw then
12 µ← 5σ − 20, σ = 0, 2, 6, 8

ξ ← 5ι− 20, 0 ≤ ι ≤ 4

13 else
14 µ← 5σ − 20, 0 ≤ σ ≤ 11& σ ̸= 4
15 ξ ← 5ι+ 10, 0 ≤ ι ≤ 11

16 n← len(µ)
17 for i=1 to x do
18 for j=1 to y do
19 if Ia(i, j) ̸= 0 then
20 aij ← Ia(i, j)
21 ψ ← If (i, j)− Ig(i, j)
22 for k=1 to n do
23 I

′
← I[aij ]

24 I
′
c ← Ic[aij ]

25 if ψ ≤ µ[k] then
26 I

′
(i, j)← I

′
c(i, j) + ξ[k]

27 else
28 I

′
(i, j)← I

′
c(i, j) + ξ[−1]

29 return I
′

the peaks in the histogram. For the black area, we set two
thresholds. To eliminate some noise and avoid false overflow,
we add another threshold τb1, which is set to 10. τb2 is the
global threshold obtained by the Otsu method. γ in Algorithm
1 means the computation of two binary images, which are the
threshold binary images of the white feature and black feature
obtained by Eq. (6) and Eq. (7), respectively. In Eq. (6) and
Eq. (7), Ig(i, j) represents the pixel value at the position of
the i-th row and j-th column in image Ig .

Finally, we DeFusionine the pseudocolor according to the
BGR histogram, the specific process as shown in Algorithm
1, and three images in Fig. 3 are included in the histogram.
The histogram of the three colors in the corresponding BGR,
which calculated from the pseudocolored PET/SPECT. For
the convenience of observation, the value of the vertical axis
is only less than 6000. From the BGR histogram, we can
determine the approximate range of blue, green and red pixel
values. Therefore, the white area assumes an yellow display,
and the black area assumes a dark blue display. ρw and ρb
used to represent yellow and dark blue area respectively.
The brightness varies according to the size of pixels and
does not display colors for areas that do not have auxiliary
diagnostic value. Then, the pixel value between the fused
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Fig. 4. Fused results and their enlarged ROIs of the same pair of MR-SPECT images by some traditional fusion methods (PCF [15], LatLrr [5], atsIF [8])
and the proposed fusion method.

image and the original PET/SPECT gray image is compared,
and corresponding changes are made. The specific process as
shown in the function of ColorUp of Algorithm 1, and the
coloring effect of the resulting image is illustrated in Fig. 3.

IV. EXPERIMENTAL RESULTS

We used Python 3.7.9 and the Pytorch version of 1.7.1
+ cu110 with its corresponding CUDA version of 11.1.
GNU/Linux x86 in a GeForce RTX 3090 Ti GPU 20 GB
RAM device-64 system. In the training, the data came from
the Alzheimer’s Disease Neuroimaging Initiative unites re-
searchers (https://adni.loni.usc.edu/data-samples/access-data/),
where we obtained 555 pairs of MR and PET images. The
age of these samples ranges from 55 to 90 years, and the
sex includes both male and female. All images were analyzed
as axial slices with a voxel size of 1.0×1.0×1.0 mm3. Cross-
validation are performed for our trained model by non-intersect
test dataset. 137 pairs of medical images from the Whole Brain
Atlas (http://www.med.harvard.edu/AANLIB/home.html.) are
obtained for testing. Among them, there are 74 pairs of MR-
SPECT, 42 pairs of MR-PET, and 21 pairs of MR-CT.

In the fusion experiment of Fig. 4 and Fig. 6, the test data
were MR and SPECT brain images with glioma, which is
a typical application in the brain nervous system. They are
identified in the test dataset and respectively correspond to
No. 010 and No. 029. Fusion of MRI and PET/SPECT can
integrate biological anatomical information and physiological
metabolic information, which can help doctors to locate and
diagnose lesions. Several existing fusion algorithms based

on traditional and deep learning methods are analyzed and
compared.

In order to quantitatively measure the results obtained from
different fusion methods, we adopted nine kinds of quality
evaluation metrics, i.e., information entropy (EN) [40], mutual
information (MI) [41], standard deviation (SD) [42], visual
information fidelity (VIF) [43], structural similarity (SSIM)
[44], sum of correlations of differences (SCD) [45], correlation
coefficient (CC) [46], mean square error (MSE) [47] and the
ratio of spatial frequency error (rSFe) [48]. For MSE, a smaller
value signifies better performance. For rSFe, a smaller absolute
value of rSFe corresponds to a better fusion effect. While
other seven evaluation metrics are on the contrary. Among
them, rSFe is a relatively uncommon evaluation metric, which
is used to measure the overall activity level of the image,
which consists of four spatial frequencies (row, column, main
diagonal, secondary diagonal) and four first order gradients
(horizontal, vertical, main diagonal, secondary diagonal) in
pixel points. The smaller the absolute value of this index is,
the better the fusion effect is. The specific calculation equation
of rSFe is explained in the Appendix.

For the convenience of comparison and analysis, we normal-
ized the calculation results of some metrics. As shown in the
Table I, we performed linear transformations on each metric,
where ki and bi (i = 1, 2, 3) represent the transformation
coefficients in Fig. 5, Fig. 7, and Fig. 10, respectively.

A. Comparisons with traditional fusion methods

In this section, we test three kinds of traditional fusion
methods and compare them with the method proposed in

This article has been accepted for publication in IEEE Transactions on Image Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIP.2024.3404660

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Univ of Calif San Francisco. Downloaded on June 04,2024 at 17:55:26 UTC from IEEE Xplore.  Restrictions apply. 



8

TABLE I
LINEAR TRANSFORMATIONS ON EACH METRIC, WHERE ki AND bi

REPRESENTS THE TRANSFORMATION COEFFICIENTS IN FIG. 5, FIG. 7,
AND FIG. 10, RESPECTIVELY.

EN MI SD VIF SCD SSIM CC MSE rSFe
k1 8 6 1/2.1 48 29 16 42 18 -37
b1 -11 0 0 0 2 0 5 5 8
k2 5.6 5 0.4 31 18 16 26 240 -32
b2 0 0 0 0 0 0 0 3 6
k3 1 1 1/13 5 2 10 100 15 -8
b3 -1 0 0 0 0 -14 90 0 0

this paper. As illustrated in Fig. 4, the first column and
second column display the MR and SPECT source images,
respectively, from some cases with brain abnormalities. The
following columns show the results obtained by three tra-
ditional methods and MdAFuse, with one column for each
method. In Fig. 4, we can observe the differences among the
fused images from different fusion methods. PCF is a fusion
method using wavelet transform, and the fused image has
serious information loss. LatLrr is a low-rank representation
method, and its fusion strategy is simple weighted average.
The results of this method can maintain good texture details
but less SPECT image information. atsIF (adaptive dual scale
image fusion) [8] is a fusion strategy through color space
conversion, which can retain more SPECT information, but
MR details are lost. Compared with other methods, MdAFuse
can better preserve the information of the two source images.
In the first line, three corresponding parts of each image inside
three colorful squares are enlarged and shown in the 2nd, 3rd
and 4th lines for clearer comparison.

The second line in Fig. 4 lists the enlarged images corre-
sponding to the parts inside blue squares in the first line. In the
last column, we mark three arrows pointing to the temporal
lobe, basilar artery and pontine. The temporal lobe is gray and
irregular in the MR image. SPECT shows a lighter gray circle
with an obvious color difference. In the PCF results, the area is
not obvious, and the features are completely retained on MR
but not on SPECT. In the results of LatLrr fusion, the area
can retain the information of the two source images but also
loses part of the SPECT information, such as the pixel value
around the temporal lobe, which is not different. The effect of
the atsIF method is greatly improved in terms of brightness,
which can retain more information in SPECT, but information
loss occurs with the combined source image. Compared with
other methods, MdAFuse can perfectly preserve the features
of the temporal lobe region. For the basilar artery area, an
obvious difference is also noted. In the MR image, the area is
a small black ellipse, while in SPECT, it is an even gray area
without shape features. PCF completely retains the information
on MRI, LatLrr and MdAFuse show a dark gray color for this
position area, and the shape is not changed. The fusion result
of atsIF becomes a white area, and a black circle is evident
outside the small ellipse. Arrow 3 points to the pontine area,
which is an area with an uneven gray distribution on MR
images and a small area with obvious brightness similar to
triangle on SPECT images. Similarly, the feature information
of SPECT cannot be found in the fusion results of PCF, and
the brightness information of this location area is not obvious
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Fig. 5. Evaluation metrics of different fusion methods on MR-SPECT image
pairs corresponding to Fig. 4.

in the LatLrr and atsIF results. The features of MR and SPECT
can be clearly viewed in the results of this method.

The third line in Fig. 4 lists the enlarged images corre-
sponding to the parts inside purple squares in the first line.
Similarly, in the last column, we mark four arrows pointing to
the occipital lobe, occipital bone, lateral sinus and occipital
lobe contour. From the display of the four arrows, it also
proves that the fusion result of MdAFuse is better especially
in the area of first arrow. The fourth line in Fig. 4 lists the
enlarged images corresponding to the parts inside blue squares
in the first line. The four arrows in the last column point to
the temporal lobe, temporal muscle, pinna and lateral occipital
bone. From the display of the four arrows, it also proves that
the fusion result of MdAFuse is better.

Traditional image fusion methods mainly belong to pixel-
level operations in which pixel-level fusion can be regarded as
the information only for feature extraction and direct use. This
kind of method pursues the maximum amount of information
to retain. To fully prove the effectiveness of the proposed
image fusion model, Nine metrics (EN, MI, SD, VIF, SSIM,
SCD, CC, MSE, rSFe) are used to evaluate the quality of the
fusion results which shown in the Fig. 5. In Fig. 5, it can be
observed that most of the metrics for our MdAFuse method
hold advantages. Specifically, the SCD value is 9% higher than
the sub-optimal value.

B. Comparisons with deep learning fusion methods

In this section, we conduct experiments on several kinds
of DL-based image fusion methods and compare their fusion
results. As illustrated in Fig. 6, the first and second columns
show the MR and SPECT source images to be fused, and
the following six columns show the fusion results obtained
by six kinds of fusion methods, including MdAFuse. From
these results, we can observe the differences among different
fusion methods. Overall, it can be observed that the fusion
images generated by U2Fusion and CDDFused seem not to
consider the information of SPECT. While FusionDN and
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Fig. 6. Performance Comparisons: The quality of our MdAFuse method is comparable to those of existing DL-based methods. From (c) to (h) are FunFuseAn
[26], FusionDN [29], U2Fusion [31], DeFusion [32], CDDFuse [30] and MdAFuse.

DeFusion methods preserve SPECT information in the fusion
images, some loss of information can still be observed. The
image fusion results from the FunFuseAn method are relatively
better, showing visual similarity to MdAFuse in this paper.
Therefore, we enlarged three small areas to further compare
and analyze. In the first line, we use three colors to mark three
different areas and enlarge them, as shown in the second to
fourth lines.

Firstly, the ROIs marked with the blue square in Fig. 6
mainly reflect the information of the frontal horn of the lateral
ventricle, thalamus and temporal lobe. In MR images, the
frontal horn of the lateral ventricle is white and symmetrical,
while in SPECT images, the left lateral ventricle is gray. The
area of the left thalamus is dark gray in MR images, and the
lenticular area is bright in SPECT images. The area of the
right thalamus is white and looks like a jungle in MR images,
while in SPECT images, it is black and irregular. The area of
the temporal lobe is measured on the left and right sides of
the blue square, which is mainly reflected in the MR image
and is continuous. In the last column of Fig. 6, four areas are
marked with colorful squares. Area 1 is the left frontal horn of
the lateral ventricle. The structure of this position in U2Fusion
and DeFusion is relatively complete, but the image looks
fuzzy. CDDFuse highlights the MR information. FunFuseAn
is similar to FusionDN, and both have color aberrations.
FusionDN of the left frontal horn of the lateral ventricle is
complete, but the pixel value distribution of right frontal horn
of the lateral ventricle is uneven. In contrast, MdAFuse can
preserve the MR features more completely. Area 2 is the
temporal lobe. In the results of FunFuseAn and FusionDN, the
structure is relatively complete and continuous, but the color
is relatively dark. The results of U2Fusion and DeFusion can
well preserve the MR features, but artifacts exist. Area 3 is the

location to the right of the thalamus, which should reflect more
texture details on MR images. In the result of U2Fusion and
DeFusion, the location is not obvious. FunFuseAn, FusionDN
and CDDFuse are similar because the organizational structure
is incomplete. In contrast, MdAFuse can preserve the right
thalamus completely. Area 4 is the left thalamus, which should
show a diffusion area of a bright spot. The results of FusionDN
and DeFusion show no obvious state. The results of U2Fusion
can identify a brightness block, but the grayscale value of this
area is more even, and no difference change is found. Other
methods can find the brightness block obviously and can detect
more layers of brightness features.

Secondly, we noticed that in the enlarged second purple
square in Fig. 6, the four areas marked in the last column are
the meninges, occipital lobe, occipital horn of lateral ventricle
and cerebral cortex (gray matter). In the MR image, area 1
appears as a thick gray column, while the SPECT image shows
an uneven wavy gray block. The results of FusionDN and
DeFusion all show some faults, and the complete structural
information of MR is not preserved. U2Fusion and CDDFuse
mainly retains MR information and ignores the SPECT charac-
teristics. In contrast, FunFuseAn and MdAFuse can consider
the more important information of the two original images
and retain the useful features more completely. Area 2 is the
occipital lobe, which is not clear to find in the U2Fusion and
DeFusion results. No significant difference is noted between
the location area and the surrounding area in the results of
FusionDN. Area 3 is the left occipital horn of the lateral
ventricle. We can find the characteristic information of the
occipital horn on the MR image, which is an area with even
grayscale values on the SPECT image. FunFuseAn can find
subtle changes, but the result of our method is more obvious,
and the structures with other methods in this position are
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TABLE II
COMPARISON WITH SOTA METHODS IN QUANTITATIVE RESULTS OF MEDICAL IMAGE FUSION OF PAIRS OF 74 MR-SPECT AND 42 PAIRS OF MR-PET

RESPECTIVELY.

MR-SPECT EN MI SD VIF SCD SSIM CC MSE rSFe
FunFuseAn [26] 4.2348 2.6155 55.3604 0.8947 1.0452 1.5794 0.8917 0.0535 -0.3340
FusionDN [29] 3.9001 2.6912 56.5726 0.5216 0.9051 0.4167 0.8756 0.0388 -0.2623
U2Fusion [31] 4.0581 2.4404 42.2308 0.3188 1.7674 0.3016 0.8832 0.0344 -0.5399
DeFusion [32] 3.7698 1.7543 49.9900 0.5393 0.7180 1.4480 0.8654 0.0225 -0.3775
CDDFuse [30] 3.9151 2.4925 58.3698 0.9666 1.3458 1.4717 0.8381 0.0375 -0.0449

MdAFuse 4.4135 2.5343 58.0256 1.0780 1.1483 1.6555 0.8838 0.0112 -0.2508
MR-PET EN MI SD VIF SCD SSIM CC MSE rSFe

FunFuseAn [26] 4.5540 2.5407 57.5225 0.7334 1.1915 1.4668 0.8122 0.1123 -0.3633
FusionDN [29] 4.2210 2.6952 64.5598 0.4297 1.4188 0.4453 0.8024 0.0756 -0.2153
U2Fusion [31] 4.4952 2.0185 50.1283 0.3383 1.5538 0.2741 0.7760 0.0453 -0.5511
DeFusion [32] 4.1463 1.6765 63.5379 0.5199 1.4278 1.4335 0.7909 3.3017 -0.2963
CDDFuse [30] 4.2248 2.0258 70.7307 0.7056 1.6863 1.4905 0.7958 0.0700 -0.0316

MdAFuse 4.7241 2.3880 60.5385 0.8432 1.2910 1.5466 0.8094 0.0250 -0.3086
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Fig. 7. Objective assessment of six kinds of deep-learning-based fusion
methods on Fig. 6.

not very clear. Arrow 4 refers to part of the cerebral cortex
(gray matter). In this area of the MR image, we can find a
scattered distribution of uneven grayscale values, and we can
observe the fine texture features. In the SPECT image, the
area is light gray with even grayscale values. From the test
results, only FunFuseAn and MdAFuse have a more prominent
hierarchical structure of grayscale values, which can retain MR
feature information more completely, while the grayscale value
hierarchical results of other methods are difficult to identify.

Finally, for the third green square area in Fig. 6, the amount
of information is rich, including the choroid plexus, occipital
horn of the lateral ventricle, occipital lobe, insular lobe and
insula. Five arrows point to the result of our method, which
is obviously different from those of the other methods. Area
1 is the choroid plexus. In the MR image, the whole location
is two concentric circles with gray color. The grayscale value
of the outer circle is deeper than that of the inner circle, and
the difference is obvious. The grayscale value of the center

of the circle is second to that of the outer circle, and it is
also prominent. In the SPECT image, the grayscale value is
more even. The results of U2Fusion and DeFusion show that
the radius of the inner circle is relatively large, the center
point of the circle is not obvious, and the pixel value of
the inner circle area is not different. FunFuseAn, FusionDN,
CDDFuse and our MdAFuse method can better retain the
MR information and can clearly find the obvious difference
between the inner circle and the outer circle and the center of
the circle. Similarly, the other arrows point to areas that work
better in our approach. The fusion methods based on deep
learning can be mainly distinguished from their operation at
the feature level. Nine quality evaluation metrics (EN, MI,
SD, VIF, SSIM, SCD, CC, MSE, rSFe) are used to evaluate
the quality of the fusion results which shown in the Fig. 7.
From this figure, we can observe that our method has an
advantage in 6 metrics compared to other methods, especially
in SSIM, SCD, VIF, and MSE, where the difference from the
sub-optimal value is quite pronounced. For the rSFe metric,
the CDDFuse method has the smallest value, but this relatively
small value seems a bit unusual. This might be due to its less
preservation of information in SPECT images, as shown in
Fig. 6(g). In comparison, our method performs better on this
metric. Although our performance in the SD and MI metrics
is not outstanding, the gaps from the maximum and second-
maximum values are not substantial.

Quantitative results are presented in Table II. The values in
the table represent the average performance of each method
in various metrics. In Table II, values displayed in bold
represent the best, and those underlined indicate the sub-
optimal. Overall, our MdAFuse method outperforms others,
showing superior results in the majority of metrics, particularly
on EN, VIF, SSIM, and MSE. CDDFuse is currently the state-
of-the-art method, and when applied to MR-SPECT fusion,
we achieved improvements of 11.14% and 18.38% in VIF
and SSIM, respectively. Additionally, we reduced MSE by
2.63%. In the case of MR-PET fusion, our method resulted
in increases of 13.76% and 5.61% in VIF and SSIM, while
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(a) (e)(b) (c) (d)

Fig. 8. Enhanced fusion effect of one group of MR-SPECT medical images
sampled five time points from a certain case by time. ((a), (b), (c), (d) and
(e) represent scans of subjects at five time points, including MR and SPECT
images.)

reducing MSE by 4.50%. The variance in the calculation of
different metrics for each method is provided in the Appendix.
What’s more, we also compared results of MR-CT pairs fusion
with SOTA methods in the Appendix.

C. Key feature enhancement test

The first two lines in Fig. 8 show MR-SPECT source
images that were sampled in five periods from the same case
with brain abnormalities. The white and black changes in the
second line of SPECT images can be used to determine the
location of the lesions and the severity of the disease, which
is helpful for tumor location, identification and auxiliary diag-
nosis. The third line is the fusion result of the corresponding
MR-SPECT image pairs of the first two lines, representing the
coloring effect of MdAFuse. Each column from left to right
represents the imaging results at a different time. In Fig. 8, we
can see the change of energy information in SPECT and the
key position to judge the abnormality easily, which is mainly
reflected in the yellow contour and the purple area. From left
to right, the number of yellow areas on fused result increases,
the yellow area in the lower left parietal lobe increases, and
the brightness of white areas also improves. If this brightness
represents higher glucose energy, it is likely that diabetes
and hyperglycemia may occur in this location.For the area
with black spots, the number of black blocks decreases with
time, but the area and concentration increase. For example,
the occipital horn of lateral ventricle has only one small
point in Fig. 8(a), and two small black blue areas are formed
in Fig. 8(b). The area of the black blue area in Fig. 8(c)
becomes larger and moves downward, while the two small
areas are merged in Fig. 8(d), and finally the area is expanded
in Fig. 8(e). It indicates that there is abnormality in this area. If
the color region represents the cell metabolism ability, then the
serious DeFusioniciency of glucose and protein may cause the
corresponding diseases in the occipital horn of lateral ventricle.
Therefore, coloring the fusion results can enhance the effect
after fusion, which can reveal not only the abnormal tissue
structure position but also the energy change, which is helpful
for accurate diagnosis of the disease evolution.

TABLE III
RUNNING TIME OF IMAGE FUSION METHODS (UNIT: S).

PCF LatLrr atsIF DeFusion U2Fusion
0.3495 12.7103 3.3208 0.3934 0.2157

FunFuseAn FusionDN CDDFuse MdAFuse
0.1706 0.3898 1.9163 1.2270

D. Computational cost

Under our computation environment, 137 pairs of different
data modalities are tested by nine kinds of methods. The
average run-time for each method is recorded. All results are
listed in Table III. We can see that the average run-time of our
method (MdAFuse) is 1.2270 seconds, which is an acceptable
time cost.

E. Ablation experiments

To fully illustrate the necessity and effectiveness of the
fusion strategy for coarse feature extraction, fine feature
extraction, multi-scale feature extraction and linear transfor-
mation, we conduct five groups of ablation experiments, the
results are shown in Fig. 9. The first line in Fig. 9 represents
a pair of multimodal (MR-PET) images, and the second to
third lines show the fusion results without linear transforma-
tion operation (w/o LinearT), without the multi-scale feature
extraction module (w/o MFM), without multi-scale and fine
feature extraction module (w/o MFFM), without multi-scale
and coarse feature extraction module (w/o MCFM), without
coarse and fine feature extraction module (w/o CFFM), and
the fusion strategy of our method proposed (MdAFuse). In
Fig. 9(f), the three arrows contain different information in
different results. In Area 1, the brightness information on PET
should be retained. In Fig. 9(b) and Fig. 9(c), the brightness
of this position is not obvious. Fig. 9(a) and In Fig. 9(d), the
position is fuzzy, which may be caused by the low brightness
intensity. Area 2 is a black area in the PET image, and the gray
level is uneven in the MR image. In Fig. 9(b) and Fig. 9(d), it
is an area with an even gray level. In Fig. 9(a) and Fig. 9(c),
the gray level is arranged in a certain gradient, but the edge
is smoothed out. In Fig. 9(f), the effect is better, and more
structural information is retained. The area pointed by Arrow
3 on MR is a small area larger than a lentil with strong and
even brightness, which has a hierarchical relationship with the
surrounding color difference. In the six cases, MdAFuse can
reflect the enhancement effect of this position, and good results
are obtained.

Fig. 10 shows some values for quality assessment, which
refer to the nine quality evaluation metrics corresponding to
the result calculations. In Fig. 10, the lower part is the original
six metric values and the upper part is the bar chart display. In
order to better observe and compare different metric values in
the same chart, linear transformation is adopted to each metric
value, with the transformation coefficients shown in Table I.
In Fig. 10, we can observe that our method has the best values
in 5 metrics and the sub-optimal value in 1 metric. Therefore,
comparatively speaking, our proposed method demonstrates
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Fig. 9. Ablation experiment of loss one or more part of the proposed image
fusion method.

the most advantageous performance. Namely, MdAFuse in this
paper is best for other metrics, which can also prove that the
network constructed by adding multi-dimensional features and
using linear transformation can obtain better fusion results.

V. CONCLUSION

In this paper, we proposed a novel DL-based fusion frame-
work for multi-dimensional features that combines spatial fea-
tures and channel features. At the same time, a deep separation
convolution network is used to excavate richer and useful
information, which can provide significant features and rich
detail features for source images for subsequent image com-
prehension and application analysis. Three different feature
extraction modules and an adaptive linear fusion mechanism
based on the correlation of each dimension feature are used to
preserve the spatial texture information of MR images and the
physiological metabolism information of PET/SPECT images.
In addition, we also proposed a key feature enhancement
method that can enhance the visualization of fusion images
in different periods for the same case, which is helpful for
clinical applications such as tumor localization, segmentation
and disease tracking. Different diseases are evaluated by dif-
ferent commonly used imaging examinations, and multimodal
medical image fusion is diverse. Follow-up work will continue
to study different types of medical fusion methods and apply
them to AI medical diagnosis. Although our method has
demonstrated certain advantages in MR-PET/SPECT image
fusion, there are still some limitations. Our method only
focuses on key features of MR and PET/SPECT images
without considering the specificity of a certain disease. In
addition, for the fusion of brain images, there was no added

w/o LineT 4.07 3.19 4.67 3.31 3.13 2.50 3.43 1.32 2.08

w/o MFM 4.28 3.14 4.59 3.38 3.00 2.41 3.33 1.42 1.66

w/o MFFM 4.33 3.17 4.97 3.53 2.41 2.54 3.33 1.23 1.88

w/o MCFM 4.21 3.07 4.15 3.37 2.26 2.59 2.56 1.35 2.71

w/o CFFM 4.03 2.98 4.11 2.80 2.07 2.07 2.45 2.96 1.78

MdAFuse 4.37 3.15 4.75 3.73 3.20 2.39 3.53 1.64 1.59
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Fig. 10. Quality evaluation of the ablation experiment responding to Fig. 9
.

neuroscience analysis for areas of potential disease. It will be
a meaningful research direction to combine neuroscience and
AI methods more deeply in the further research.
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